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Abstract 

Background:  In the last decade, a lot of attention has been given to develop artificial intelligence (AI) solutions for 
mental health using machine learning. To build trust in AI applications, it is crucial for AI systems to provide for prac‑
titioners and patients the reasons behind the AI decisions. This is referred to as Explainable AI. While there has been 
significant progress in developing stress prediction models, little work has been done to develop explainable AI for 
mental health.

Methods:  In this work, we address this gap by designing an explanatory AI report for stress prediction from wearable 
sensors. Because medical practitioners and patients are likely to be familiar with blood test reports, we modeled the 
look and feel of the explanatory AI on those of a standard blood test report. The report includes stress prediction and 
the physiological signals related to stressful episodes. In addition to the new design for explaining AI in mental health, 
the work includes the following contributions: Methods to automatically generate different components of the 
report, an approach for evaluating and validating the accuracies of the explanations, and a collection of ground truth 
of relationships between physiological measurements and stress prediction.

Results:  Test results showed that the explanations were consistent with ground truth. The reference intervals for 
stress versus non-stress were quite distinctive with little variation. In addition to the quantitative evaluations, a qualita‑
tive survey, conducted by three expert psychiatrists confirmed the usefulness of the explanation report in under‑
standing the different aspects of the AI system.

Conclusion:  In this work, we have provided a new design for explainable AI used in stress prediction based on physi‑
ological measurements. Based on the report, users and medical practitioners can determine what biological features 
have the most impact on the prediction of stress in addition to any health-related abnormalities. The effectiveness 
of the explainable AI report was evaluated using a quantitative and a qualitative assessment. The stress prediction 
accuracy was shown to be comparable to state-of-the-art. The contributions of each physiological signal to the stress 
prediction was shown to correlate with ground truth. In addition to these quantitative evaluations, a qualitative 
survey with psychiatrists confirmed the confidence and effectiveness of the explanation report in the stress made by 
the AI system. Future work includes the addition of more explanatory features related to other emotional states of the 
patient, such as sadness, relaxation, anxiousness, or happiness.
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Background
Although stress is a regular part of daily life, long-term 
stress can have severe consequences on health. Chronic 
mental stress can cause cardiovascular disease, depres-
sion, and increased susceptibility to infection [1]. The 
ability to detect when a person is stressed might there-
fore be very useful in the efforts to prevent health prob-
lems, especially in patients with suicidal thoughts [2]. 
Several artificial intelligence (AI) systems have been pro-
posed for early automatic stress detection using physi-
ological measurements such as electrocardiogram (ECG) 
and electromyography (EMG) taken from wearable 
devices [1, 3, 4]. The practical use of AI systems is lim-
ited, because people do not always trust the automated 
solutions. The primary reason for the lack of trust is a 
lack of transparent explanations of the results produced 
by AI models. Because the impact of wrong diagnosis 
is high, health professionals and patients are reluctant 
to adopt technologies that are not well understood. We 
are hence interested in developing an AI-based stress 
prediction model that automatically produces a report 
explaining the results of the AI evaluation in a way that 
is understandable and useful to human users. Under-
standing the reasons behind AI models’ predictions has 
become so crucial that the European Union developed 
new data privacy rules in 2018, where companies that use 
AI are obliged to provide either detailed explanations of 
individual AI algorithms or general information about 
how the algorithms make decisions when working with 
personal data [5].

Recently, there have been increasing efforts to develop 
explainable or interpretable AI systems, which make pre-
dictions and behave in ways that humans can understand 
[6]. Simple machine-learning (ML) models like decision 
trees, rule-based algorithms, and linear regression mod-
els may be considered interpretable, because they show 
the direct relationships between features and predictions. 
For more complex ML models, several approaches have 
been proposed to show the relationships, depending on 
the type of black-box model and the type of input data 
[6]. Some proposed approaches are model agnostic and 
can explain the outcome of any black-box model with any 
type of input [7, 8], whereas others focus specifically on 
deep neural networks used for image classification [9–
11] or more general types of input [12].

In medicine, deep learning methods were used to cre-
ate heat-maps to explain the predictions of AI systems 
that use medical images such as magnetic resonance 
images or X-ray images [14–16]. Other models were used 
to explain medical diagnoses by analyzing the influence 
of specific features on the diagnoses [16, 17]. However, 
no interpretable AI has yet been developed for stress pre-
diction. One major limitation of previous interpretable 

AI approaches is that they fail to provide a user-centric 
explanation but instead focus on the mathematical rela-
tionships between features and predictions. Additionally, 
there are still no standard criteria by which to evaluate 
the interpretability of an AI system, nor is there even a 
clear definition of interpretability.

To address the lack of explainable AI systems for stress 
prediction, we propose a new design for an explainable 
AI system that predicts stress using data from weara-
ble devices. The proposed explanatory component is 
inspired by medical blood test reports, which are already 
familiar to health care providers and patients. A sample 
of a typical blood test report is provided in Fig.  1. The 
stress explanation report includes the different physi-
ological attributes that influence the overall probability 
that the subject is stressed and the reference ranges for 
each attribute. The explanation report and the blood test 
report share several look-and-feel aspects, including: the 
individuals features that are measured directly, the meas-
ured values of the features and the corresponding units, 
the range of normal values for the features, and flags that 
indicate any abnormal values. The abnormal values on 
the stress report are related to stress. In addition to those 
attributes, the stress report gives an overall probabil-
ity of stress and a quantitative measure of the influence 
of each measured feature, referred to as the ‘IMPACT’, 
on the overall stress probability. We evaluated our pro-
posed approach with a set of qualitative and quantitative 
experiments. The quantitative assessment focused on 
evaluating the different tests and features included in the 
report. The qualitative assessment was based on inputs 
from three expert psychiatrists to determine whether 
the report provides adequate explanation for the AI 
decisions.

In summary, the key contributions of our work are: 

1.	 Design of an Explanation report for AI predict-
ing stress. The design is medically oriented so that 
the report is familiar to health care providers and 
patients. The report includes stress prediction and 
the physiological signals related to stressful episodes, 
detailed in “Design of the explainable AI report” sec-
tion.

2.	 Models and approaches for automatic generation of 
the report. The models include, not only the feature 
extraction and stress prediction, but also the model 
that derives the contribution of each physiological 
signal and the reference interval per vital sign. The 
different models are described in “Models for AI pre-
diction and explanation” section.

3.	 Collection of Ground Truth from literature related 
to the physiological effect of stress. The ground truth 
data is used to provide information about how physi-
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ological features are affected by stress based on past 
scientific evidence. The collected data is listed in 
“Approach to extract the stress rangesand reference 
intervals” section.

4.	 Methods for quantitative and qualitative assessments 
to evaluate the effectiveness of the explainable AI 
report, explained in “Experiments and results” sec-
tion.

The remainder of this paper is organized as follows. 
“Methods” section presents a literature review of exist-
ing explainable AI models and automated stress predic-
tion systems. “Experiments and results” section covers 
our approach to design and produce the explainable AI 
report. “Discussion” section presents the evaluation of 
our approach. “Conclusion” section summarizes our 
findings and plans for future work.

Related work
Explainable AI models
Approaches to make complex AI prediction models 
understandable to humans generally focus on clarifying 
the input-output relationship. Different approaches have 
been proposed for different types of data and prediction 
models. One important approach to attempt to explain 
any black-box model is the Additive Feature Attribution 
method, in which the original black-box model is approx-
imated with a simpler model that is easily explainable. 
The approximation is composed of a linear combination 
of binary variables, as shown in Eq. 1

(1)g(z
′

) = φ +
∑

i=1

φiz
′

i

Fig. 1  Sample of a blood test report [13]
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where z′ ∈ [0, 1]M , with M as the number of simplified 
input features; and φi ∈ R , which represents the con-
tribution of feature zi to the model’s prediction. In the 
simplified features vector, a feature with a value of ’1’ is 
present in the subject, and a feature with a value of ’0’ 
is absent in the subject. Another approach that is com-
monly used to explain black-box models is local inter-
pretable model-agnostic explanations (LIME) [7]. In the 
LIME approach, the input data are perturbed, and the 
effects of the perturbation on the output are assessed. 
LIME then tries to approximate the machine learning 
(ML) model with another model that is easily interpret-
able. The interpretable model is a linear combination of 
the input variables with some simplifications and pertur-
bations. The LIME model presents as an output a list of 
explanations, reflecting the contributions of each variable 
to the results of the original ML model. A weak point of 
the LIME approach is the instability of the explanations, 
which can differ greatly with small changes in the input 
data.

The shapley additive explanations (SHAP) approach 
[8] combines LIME with Shapely values [18], a concept 
in cooperative game theory that was developed to dis-
tribute the gains from a cooperative game to players, or 
features. SHAP uses locality approximation and Shapely 
additive values to provide an explanation for any black-
box model. The method uses three criteria: local accu-
racy; missingness, which does not give any importance to 
missing features; and consistency, which makes sure that 
even if a model changes, the feature impact will still have 
the same attribution assigned. To interpret the prediction 
of a convolutional neural network (CNN), Zhou et  al. 
[9] introduced the concept of class activation mapping 
(CAM), which indicates the discriminative image regions 
used by the CNN that impact target classification. CAM 
only works on CNNs that are composed of a global aver-
age pooling (GAP) layer preceding a fully connected 
layer that produces the output. Deep learning important 
features (DeepLIFT) [12] is another approach that uses 
back-propagation to explain a CNN model. DeepLIFT 
decomposes the output of a neural network for a spe-
cific input by back-propagating the contribution of every 
feature of the input. The layer-wise relevance propaga-
tion (LRP) [11] method is equivalent to DeepLIFT with 
the reference activation of all neurons set to zero. The 
main idea behind the LRP algorithm is to explain a clas-
sifier’s prediction specific to a given data point by using 
the topology of the learned model to attribute relevance 
scores to components of the input.

In healthcare, explainability is important since deci-
sions made by ML models can have an impact on the 
patients’ safety [19]. In this domain, explainable AI 

applications have been developed to interpret data from 
imaging studies. A recent study to detect COVID-19 
using chest X-ray images [14] introduced a technique 
called GSInquire that created heatmaps to confirm the 
diagnostic features learned by the proposed COVID-net 
model. To study the reliability of a CNN model designed 
to identify brain tumors in MRI images, Pereira et  al. 
[15] used GradCAM, an improvement of CAM, to cre-
ate heat-maps that show the factors that influenced the 
classification of features as tumors. For computed tomog-
raphy (CT) imaging, a sensitivity analysis was applied to 
liver CT images to explain the segmentation of tumors 
[16]. The analysis was performed by maximizing the 
target neuron using gradient ascent. Another new ML 
system called Prescience was introduced [17] to inter-
pret real-time predictions to prevent hypoxemia during 
surgery. The Prescience model uses SHAP attribution 
to analyze preoperative factors and in-surgery param-
eters. In another study [20], a framework was proposed 
for the design of an explanatory display to interpret the 
prediction of a pediatric intensive care unit in-hospital 
mortality risk model. The explanation was displayed in a 
user-centric manner and established using Shapely val-
ues. Explainable models have not been applied to stress 
prediction based on physiological sensor data. Explain-
able AI systems for stress prediction need to augment 
their explanations with additional predictive models that 
provide descriptions of biological factors other than the 
stress state per se.

Stress prediction systems
There have been several attempts to create automatic 
stress prediction systems, each using different features 
to predict or detect stress. To reduce privacy concerns 
and power consumption, some approaches only use data 
from accelerometers. For example, Garcia-Ceja et  al. 
[21] extracted 34 features from the time and frequency 
domains of accelerometer data and fed them into sev-
eral classification models including Naives Bayes, deci-
sion tree, and random forest. They were able to achieve 
an accuracy of 71% using decision trees. In addition to 
accelerometer data, Giakoumis et  al. [22] included gal-
vanic skin response (GSR) and electrocardiogram (ECG) 
data and behavioral features to predict stress and found 
that prediction based on the physiological data and the 
behavioral features was more accurate than prediction 
based on physiological data alone. Sun et  al. [23] were 
able to obtain an overall accuracy of 92.4% for 10-fold 
cross validation using GSR, ECG, and accelerometer data. 
Carneiro et al. [24] added a video camera and pressure-
sensitive touchscreens to accelerometers and obtained an 
accuracy of 78% in classifying touches as stressed or not 
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stressed using J48 tree. Bomogolov et  al. [25] predicted 
stress with 72.39% accuracy using a random forest classi-
fier based entirely on call logs, Bluetooth data, and short 
message service (SMS) data from users’ mobile phones. 
When those data were combined with global positioning 
system (GPS) and Wi-Fi information, these features used 
allowed to detect a change of behavior in about 86% of 
the participants during stressful times [26]. Li et al. [27] 
implemented a deep neural network model to perform 
two classification tasks. A binary stress detection and a 
3-class emotion classification using physiological signals 
collected from wrist-worn and chest-worn sensors. They 
were able to achieve high prediction accuracy of around 
99% for both tasks. A summary of literature on stress 
prediction systems is presented in Table 1, listing the dif-
ferent measurements and models used per experiment as 
well as the highest accuracy obtained.

Although stress detection has been widely studied, it 
is still challenging to explain the results of the detection 
systems in a way that is easily understandable to humans. 
It is important for health care professionals and patients 
to understand the reasons behind decisions made by AI 
models, because the impacts of those decisions can be 
serious. Many of the models described in the literature to 
predict mental stress use complex algorithms to achieve 
accurate predictions; however, the interpretability of 
the models tends to decrease as the accuracy increases. 
Hence, there is a need for models that provide explana-
tions and interpretations for complex stress prediction.

Methods
Problem description and objectives
The objective of this work is to provide an explanation of 
the stress prediction conducted by AI systems that take 
as input the physiological signals listed in Table  2. The 

generated explanations need to be physician and patient 
friendly.

There are several challenges that we aim to address. The 
first challenge is to determine what explanation should be 
displayed for physicians and patients and how the expla-
nation should be presented. The second challenge is to 
develop models that can produce the necessary explana-
tions. In order to produce the desired explanations, three 
models are needed as shown in Fig.  2. The first model 
extracts the desired physiological features by applying 
statistical signal processing to physiological data from 
ECG, EDA, EMG, respiration, and temperature sensors. 
The second model derives the contribution of each fea-
ture to the overall stress prediction using a separate, fea-
ture-based classifier that takes as input the pre-processed 
features. The third model determines the ranges of fea-
ture values that are indicative of a non-stressful state.

Design of the explainable AI report
Proposed explanations and corresponding user interface
Inspired by standard reports of blood test results, we 
propose to have the AI system automatically generate a 
report showing the measured values and normal ranges 
for each component of the stress assessment. The aim is 
to help patients and health care professionals understand 

Table 1  Summary of literature review on stress prediction systems

Measurements Prediction model Stress prediction accuracy Paper

Accelerometer, 34 features from the time and 
frequency domains of accelerometer data

Naives Bayes, Decision Trees, and Random 
Forest Classifiers

Highest accuracy 71% using decision trees [21]

Accelerometer, GSR, ECG and behavioral 
features

LDA (Linear Discriminant Analysis)-based 
classifier

Prediction based on the physiological data 
and the behavioral features was more accu‑
rate than prediction based on physiological 
data alone

[22]

Accelerometer, GSR, ECG Decision Tree Classifier 92.4% for 10-fold cross validation [23]

Accelerometer, video camera, pressure-sensi‑
tive touchscreens

J48 tree 78% in classifying touches as stressed versus 
not stressed

[24]

Call logs, Bluetooth data, and SMS data from 
users’ mobile phones

Random Forest Classifier 72.39% for binary classification, stressed 
versus not stressed

[25]

Physiological data collected from chest-worn 
and wrist-worn sensors

Deep Convolutional Neural Network 99.80% accuracy rates for binary classification 
for stress detection

[27]

Table 2  Physiological Measurements

Signal Measurement

Electrocardiogram (ECG) Electrical activity of the heart

Electromyography (EMG) Electrical activity of muscles at 
rest and during contraction

Electrodermal activity (EDA) Wrist and chest skin conductance

Temperature Wrist Temperature

Respiration Respiration rate and cycle
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which physiological factors are related to stressful epi-
sodes experienced by the patients. For the collection of 
the measurements needed to generate the explainable AI 
report, the patient needs to stay still for a maximum of 3 
min with a set of sensors. Even though only a 90-second 
interval is needed to extract the physiological measure-
ments, the additional time is recommended taking into 
consideration any faulty data.

Layout of the report
For ease of reference, a sample blood test report is shown 
in Fig. 1. The key aspects of the blood test report include:

•	 TESTS: the different blood tests included in the 
report

•	 RESULT: the measured values of the different blood 
tests

•	 FLAG: indicators of normal/abnormal test results
•	 UNITS: the units of the measured values
•	 REFERENCE INTERVAL: the range of normal test 

values

To make our AI-generated stress prediction report 
compatible with what patients and health care profession-
als are used to seeing, we will use a similar organization. 

An example of how the stress prediction report will look 
is shown in Fig. 3. This report will include:

•	 USER STRESS LEVEL: the stress level of the patient 
in percentage, varying between ‘Not stressed’ (0%) 
and ‘Extremely stressed’ (100%).

•	 SYSTEM CONFIDENCE LEVEL: Accuracy of the 
stress prediction model which can be considered as a 
historic accuracy based on historic data.

•	 TESTS: the different physiological signals included 
in the report, extracted from the signals listed in 
Table 3.

•	 RESULT: the measured values of the physiological 
signals, typically presented as statistical measures 
(e.g., mean or median over a given interval) of the 
raw data.

•	 UNIT: the units of the measured values.
•	 REFERENCE INTERVAL: the range of normal val-

ues for the physiological signals under non-stressful 
conditions. (“Derivation of the stress ranges and ref-
erence intervals” section shows how the intervals are 
derived).

•	 IMPACT: the percentage contribution of each 
physiological signal to the overall stress prediction 
(“Model to derive the contributions of each feature 

Fig. 2  The proposed solution
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Fig. 3  An example of a stress prediction report
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to the stress prediction” section explains how the 
impact is calculated).

•	 FLAGS: indicators of normal/abnormal physiological 
signals. Red indicates values associated with stress, 
whereas green indicates values not associated with 
stress. Star-shaped flags represent correspondence 
to the REFERENCE INTERVAL. Circle-shaped flags 
represent the IMPACT of the test result on the over-
all prediction. Therefore a red star-shaped flag indi-
cates that the test result is outside of the reference 
interval, as for the red circle-shaped it indicates that 
the IMPACT of the test result is positive.

We also introduce an online analytical processing 
(OLAP) Customization approach. Our stress evaluation 
report allows for different levels of customization that are 
common with decision support systems. The detailed list 
of physiological measurements can be treated as a multi-
dimensional OLAP data warehouse. Different levels of 
extracts and aggregations can be generated and custom-
ized to fit users’ needs. For example, a simple aggregate 
custom report might include only heart rate, respiration, 
and body temperature.

Choice of TEST signals
The physiological measurements included in the report 
are commonly used in experimental procedures to study 
the biological effects of stress [28]. Additional features 
that are crucial to the explanation of the stress prediction 
are shown in Table 3. Acerbi et al. extracted several EDA 
and ECG features and reported the values at baseline and 
during stress [29]. They then performed t-tests to iden-
tify features which values differed between stressful and 
non-stressful conditions. In another study, the same pro-
cedure was followed using only EMG signals [30]. For the 
temperature and respiration features, statistical measures 
are extracted including the mean, maximum, minimum, 
and standard deviation.

Choice of dataset
The wearable stress and affect detection (WESAD) data-
set [28] consists of different physiological measurements 
recorded during stressful and relaxed conditions. It con-
tains physiological and motion data recorded from wrist-
worn and chest-worn devices. The devices used are the 
RespiBAN Professional,1 which is placed around the sub-
ject’s chest, and the Empatica E4,2 which is worn on the 

Table 3  Stress explanation features

Signal Features Description

ECG µHR , σHR Mean, standard deviation,

MaxHR ,MinHR Maximum and minimum heart rate (bpm)

HFHRV Variance in HRV in the high frequency range (.15–.40 Hz)

LFHRV Variance in HRV in the low frequency range (.04–.15 Hz)

|µ|NN , σNN ,MadNN Mean of the absolute values, standard deviation, median absolute deviation

MedNN ,MCVNN Median, and median-based coefficient of variation of the successive differences between the RR intervals

RMSSDNN Root mean square(RMS) of the RR interval

PNN20 , PNN50 Number of interval differences of successive RR intervals greater than 20 ms or greater than 50 ms

EMG µEMG , σEMG Mean, standard deviation, maximum, and minimum

MaxEMG ,MinEMG Values of EMG activity in the lower trapezius

PeaksEMG , RMSEMG Number of peaks in signal, normalized RMS value

RMS50PEMG , RMS90PEMG 50th, 90th percentile of rank-ordered RMS values

EDA µWristEDA , σWristEDA Mean, standard deviation, maximum, and minimum

MaxWristEDA ,MinWristEDA Values of EDA connected to the user’s wrist

µChestEDA , σChestEDA Mean, standard deviation, maximum, and minimum

MaxChestEDA ,MinChestEDA Values of EDA connected to the user’s chest

µChestSCL , σChestSCL Means and standard deviations of the skin

µChestSCR , σChestSCR Onductance level and skin conductance response

Respiration µRespRate , σRespRate Mean, standard deviation, maximum

MaxRespRate ,MinRespRate and minimum of the respiration rate

Temperature µWristTemp , σWristTemp Mean, standard deviation,

MaxWristTemp ,MinWristTemp Maximum and minimum values of the temperature measured from the user’s wrist

1  http://​www.​biosi​gnals​plux.​com/​en/​respi​ban-​profe​ssion​al.
2  http://​www.​empat​ica.​com/​resea​rch/​e4/.

http://www.biosignalsplux.com/en/respiban-professional
http://www.empatica.com/research/e4/
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subject’s non-dominant hand. The modalities include 
EDA and temperature data from an Empatica C4 device. 
The RespiBAN device provides data on respiration; ECG; 
EDA recorded on the rectus abdominis, considering that 
the abdomen has a high density of sweat glands; EMG 
recorded on the upper trapezius muscle on both sides of 
the spine; and temperature recorded on a sensor placed on 
the sternum.

Data were collected from 15 graduate students in a labo-
ratory setting. Each subject experienced three conditions: 

1.	 Baseline Users were provided neutral reading mate-
rial (e.g., magazines).

2.	 Amusement Users watched a set of funny videos.
3.	 Stress Users were exposed to the Trier Social Stress 

(TSST), which is used to induce stress in participants. 
The TSST generally includes three phases: an antici-
patory speech preparation, speech performance, and 
verbal arithmetic.

From this dataset we extract the TEST signals specified in 
“Choice of TEST signals” section.

Models for AI prediction and explanation
Model to derive the contributions of each feature to the stress 
prediction
An important aspect of the stress evaluation report is the 
IMPACT, or indication of how much each factor con-
tributes to the overall stress probability. To calculate the 
impact for each factor, we customized the SHAP model, 
where the total probability of stress PX (Stress) for each set 
of TEST measurements X is computed as the sum of the 
mean probability PAvg (Stress) and the individual contribu-
tions of each TEST feature as seen in Eq. 2.

where F represents the choice of physiological feature, 
and N represents the number of features for observation 
X. PAvg (Stress) represents the probability of a random 
person being stressed. The φi , also known as the SHAP 
value, is used to derive the percentage contribution of 
each feature. A positive value indicates that the feature 
reinforces the prediction of stress, whereas a negative 
value indicates a negative contribution, which is an indi-
cation of non-stress. Those contributions indicate devia-
tion from the average probability of stress PAvg (Stress) .

The SHAP φi values for each feature i can be calculated 
using any ML classifier by removing (nullifying) the fea-
tures i one at a time and then computing the resulting pre-
dictions. In our model, we used a random forest classifier. 
Mathematically, the φi is computed based on Eq. 3.

(2)PX (Stress) = PAvg (Stress)+
∑

i∈F1,...,FN

φi

where S is a set of indexes in z’ (as seen in Eq. 1), M is 
the set of all input features, xS represents the values of the 
input features in the set S, and f() represents the hypoth-
esis function for the classifier. To obtain the SHAP val-
ues, a model fs is trained with the feature i withheld, and 
another model f(S⋃ i) is trained with that feature present. 
Then, the predicted values from both models are com-
pared to the current input xS.

The IMPACT measure is calculated as the percentage 
of the features’ contributions φi as follows:

The PAvg (Stress) can be computed from historical train-
ing data by computing the percentage of individuals who 
are stressed, or the average of the stress probability:

where ytrain represents true labels of stress predictions 
for individuals available in historical training data.

The authors of SHAP also proposed KernelSHAP 
and TreeSHAP and provided many global interpreta-
tion methods. KernelSHAP is an approach to estimate 
Shapely values inspired by local surrogate models, which 
are interpretable models used to explain the predictions 
of any black-box ML model. With KernelSHAP, it will 
be possible to use any classification model to provide 
the stress prediction. As for the TreeSHAP, it provides 
interpretation for any tree-based model and has a faster 
implementation than KernelSHAP. TreeSHAP reduces 
the computational complexity from O(TL2M) , the com-
plexity in KernelSHAP, to O(TLD2) , where T is the num-
ber of trees, L is the maximum number of leaves in any 
tree, and is D the maximal depth of any tree. In addition 
to being computationally faster, TreeSHAP allows the 
creation of different visualizations that can help users 
understand the interpretation. Therefore, we used Tree-
SHAP as the model that assigns the feature contribution.

Random forest classifier for stress prediction
The measurements in the RESULTS column of the stress 
evaluation report are used as inputs to the stress pre-
diction model, which indicates if the user is stressed or 
not stressed according to each measurement. TreeSHAP 
requires the prediction model to be a tree-based model. 
Driven by the fact it provides solid prediction results and 
works well with imbalanced dataset, the balanced ran-
dom forest classifier was our choice for stress prediction. 

(3)

φi =
∑

[

f(S
⋃

{i)(x(S
⋃

{i))− (fs(xs)
]

(

|S|!(|M| − |S| − 1)!

|M|!

)

(4)IMPACTi,X (%) =

(

φ(i,X)
∑

Features |φX |

)

(5)PAvg (Stress) = Mean(ytrain)
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The random forest is an ensemble method used for clas-
sification or regression. It is trained using a bagging 
method, which consists of randomly selecting a subset of 
the training set, fitting a decision tree to each subset, and 
finally combining the results. For classification, the ran-
dom forest uses the majority votes for the class predic-
tion; because each tree provides one vote, the final vote 
can be the mode or the most frequent class predicted by 
each tree. When working with an imbalanced dataset, 
a version of the random forest classifier known as the 
‘balanced random forest’ is highly useful. The balanced 
random forest model randomly under-samples each 
bootstrap sample to balance the labels. The data was split 
into 90% for training, 10% for testing, and 10% validation, 
separated by users. For the evaluation, a leave-one-user-
out cross-validation scheme is employed where the data 
of one user are held out for testing while the data of the 
rest of the users are used for training. Hyper-parameter 
optimization techniques are implemented to fine-tune 
the stress prediction model. We use, from the scikit-learn 
library, “GridSearchCV” to select the optimal random 
forest hyper-parameters.

Approach to extract the stress ranges and reference 
intervals
The following section describes how we generate stress 
ranges and reference intervals using the explainable 
stress prediction model. In order to make sure that these 
ranges are correct and relevant to medical studies, we 
collect from the literature reference intervals of features 
obtained based on experimental studies, which we will 
refer to as the Ground Truth Data. These ranges are used 
in the evaluation section to validate the accuracy of our 
model generated intervals’.

Ground truth data collection
We evaluated the results of our stress prediction model 
using ground truth data collected from experiments that 
tested the effects of stress on physiological measure-
ments [29–32]. The ground truth data provide informa-
tion about which physiological features can be used as 
stress indicators. We compared the list of stress indica-
tors obtained experimentally to the list of features deter-
mined by our model to indicate stress.

The previous studies recorded the mean values and 
standard deviations of features measured during stress-
ful and non-stressful conditions. They then used Kruskal-
Wallis tests or Friedman tests to compare mean values 
between the two conditions to identify statistically sig-
nificant differences ( p <0.05). They found that the sig-
nificant features were µNN , µHR , σHR , RMSSDHRV  , 
PNN50HRV  , and µEDA . Table 4 shows the normal ranges, 
stress ranges, and p values of the significant features. In 

order to extract stress levels of subjects using the EMG 
signal of the upper trapezius muscle, an experimental 
procedure was performed in which subjects were faced 
with three different stressful situations: a calculation 
task, a logical puzzle task, and a memory task. The EMG 
signal was found to be a meaningful feature to detect 
stress, as its amplitude was higher during stress than 
during relaxed conditions. The same was found for the 
EMG root mean square values. Therefore, on the basis of 
the experiments performed, we determined that the fol-
lowing features show elevated EMG amplitude during 
stressful situations: µEMG , RMSEMG , and RMS50PEMG . 
The respiratory system’s response to stress was reported 
in [31, 32], showing that the respiration rate µRespRate 
increases during stress.

Derivation of the stress ranges and reference intervals
To determine if the measurements are within a non-
stressful range, our model provides ranges for each TEST 
that are related to stress and non-stress, respectively. 
Such ranges are useful to show what the normal values 
are for each feature and when the measurements might 
indicate stressful conditions.

We derive the ranges using the IMPACT values gener-
ated for each observation in the training dataset. First, 
we separate the feature values by their assigned IMPACT 
values. Then, we group the ones with positive values in a 
’Stress Group’ and the ones with negative values in a ’No 
Stress Group’. We then perform a t-test to make sure that 
there is a significant difference between the two groups 
of values. Then, similarly to how many laboratory tests 
define the Reference Interval, we use a non-parametric 
approach and take the values falling at the 2.5 and 97.5 
percentiles in the No Stress Group as the lower and upper 
limits of the REFERENCE INTERVAL, respectively. For 
the ’stress interval’, we use the values falling at the 2.5 and 
97.5 percentiles in the Stress Group.

Experiments and results
We evaluated our explainable AI design for a stress eval-
uation report through a set of qualitative and quantitative 
experiments.

Table 4  ECG features shown experimentally to indicate stress 
[29]

Physiological 
feature

Range for no stress Range for stress p Value

µNN(ms) 788± 126 642± 96 0.005

µHR(BPM) 78.45± 12.38 95.54± 13.69 0.005

σHR(BPM) 6.43± 1.15 10.48± 3.88 0.001

RMSSDHRV (s) 0.04± 0.02 0.03± 0.01 0.018

pNN50HRV (s)) 22.89± 19.44 7.35± 4.98 0.043
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The qualitative assessment aimed to determine whether 
the report provides adequate explanation for the deci-
sions of the AI. In the qualitative assessment, expert psy-
chiatrists were asked the following questions: 

1.	 How useful are the report parameters for the physi-
cians and patients in understanding how the model is 
making its decision?

2.	 Does the report provide the AI explanation needed 
for psychiatrists with examples?

3.	 What is your opinion concerning to the report’s dis-
play and the attached instructions?

4.	 Can the explainable reports be useful for additional 
medical applications such as tracking patients’ stress 
over time or providing other medical insights about 
the relationships between physiological signals and 
stress?

The details of the qualitative assessment section are 
described in “Expert feedback on design of explainable 
report: a qualitative assessment” section.

The quantitative assessments aimed to evaluate the 
reliability and accuracy of the following aspects of the 
explainable AI report, a sample is shown in Fig. 3:

•	 STRESS PROBABILITY To test this aspect, we 
used a standard ML evaluation approach as 
described in “Evaluation of the models for stress 
prediction” section.

•	 REFERENCE INTERVAL To determine how robust 
the REFERENCE INTERVAL is to changes in the 
input data, we compared the REFERENCE INTER-
VALs created using two different subsets of test 
results, as described in “Evaluation of the ranges 
and the reference intervals” section.

•	 IMPACT​ To assess the accuracy of the IMPACT 
values, we examined the correlations between 
the IMPACT values and other stress indicators 
obtained from studies that examined what physi-
ological measurements are affected by stress. 
The results are described in “Evaluation of the 
IMPACT​” section.

•	 FLAGS To assess the accuracy of the FLAGS as 
indicators of whether the measurements for a par-
ticular factor are indicative of a stressful state, we 
tested how consistently the two FLAGS for each 
feature indicated the same stressful state. The 
results are described in “Evaluation of the FLAGs” 
section.

The above evaluations were performed using a 4-fold 
cross validation to ensure balanced subsets of data 

with sufficient observations. The accuracy of this 
model, known as the system’s confidence level, is the 
accuracy of the stress prediction model which can be 
considered as a historic accuracy based on historic 
data.

Expert feedback on design of explainable report: 
a qualitative assessment
The qualitative assessment aimed to determine whether the 
psychiatrists and patients can understand the prediction of 
the AI system and find them useful based on psychiatrists’ 
opinion. A questionnaire was provided to three expert psy-
chiatrists to provide their evaluation on the explanation 
report. The questionnaire was accompanied by instructions 
on how to interpret and read the report in addition to a 
description of each TEST in the report.

The following section includes a summary of the ques-
tionnaire’s result. 

1.	 How useful are the report parameters for the physi-
cians and patients in understanding how the model 
is making its decision? The expert psychiatrists 
assessed the report parameters and physiological 
attributes used to be moderately to extremely use-
ful to help them and the patient understand how the 
model is making its decision. A bar chart shown in 
Fig.  4 provides the answers provided by the three 
psychiatrists.

2.	 Does the report provide the AI explanation needed 
for psychiatrists and patients? The psychiatrists 
agreed that the report does provide the needed 
explanation for them to understand the AI decision. 
However, 2 out of 3 psychiatrists thought that this 
would not be the case for the patients. In addition, 
the OLAP approach, was found to be moderately 
important in providing a simpler explanation to the 
patient.

3.	 What is your opinion concerning the report’s dis-
play and the attached instructions? The psychia-
trists found that the report’s display and the instruc-
tions manual were easy to follow. However, 2 out of 
3 reported that the report’s organization was a little 
confusing and one found it easy to follow. In addi-
tion, 2 out of 3 think that the instructions manual 
would be slightly clear for the patients.

4.	 Can the explainable reports be useful for addi-
tional medical applications? The expert psychia-
trists had different opinions related to the usefulness 
of the report for a medical diagnosis: ’Not at all’ vs 
’Slightly’ vs ’Very Useful’. However, they all reported 
that the explanation report allows to study the rela-
tion between physiological signals and stress. 2 out 
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of 3 found that it could be successfully used to track 
patient’s stress over time.

Experiment setup for quantitative evaluation of models: 
TESTS extraction
We eliminated faulty measurements from the WESAD 
dataset, such as missing data caused by failures in signal 
recording. The features listed in Table 2 were extracted 
from the different physiological raw signals using the 
numpy, Neurokit [33], and Biosppy [34] libraries in 
Python. Neurokit is a Python toolbox for statistics and 
signal processing of data from ECG, EDA, EMG, and 
EEG. Biosppy is a Python toolbox for bio-signal pro-
cessing. We extracted data for 42 features, each with 
1640 measurements taken over 90-second intervals. 

The data had an imbalance with 19.7% stress labels. The 
F1 score was used as the evaluation metric.

Evaluation of the models for stress prediction
The STRESS PREDICTION is made using the balanced 
random forest classifier. To evaluate the classifier, the 
data was divided into four sub-samples and a 4-fold 
cross-validation approach was followed. Because the 
dataset was imbalanced, with 19.7% of the labels rep-
resenting the class ’stress’, we chose the F1 binary score 
metric, which only reports results for the stress labels. 
The F1-score obtained from the 4-fold validation are 
respectively 0.93, 0.63, 0.91 and 0.64. The average F1 
binary score was 0.78, which is an indication of high 
accuracy but less than what was achieved in the litera-
ture using different input features [8].

Fig. 4  Bar chart listing the usefulness of the report parameters as assessed by three expert psychiatrists



Page 13 of 20Jaber et al. BMC Medical Informatics and Decision Making           (2022) 22:38 	

Evaluation of the ranges and the reference intervals
The REFERENCE INTERVAL is defined by the range of 
values in healthy, non-stressed individuals. The STRESS 
INTERVAL, on the other hand, includes the test results 
of stressed individuals. The intervals were determined 
using the method described in “Derivation of the 
stress ranges and reference intervals” section. We fol-
lowed a statistical approach to create the REFERENCE 
INTERVAL from the No-Stress Group. The 42 features 
along with their intervals are shown in Table  5 and 6. 
Features that tend to increase with stress were repre-
sented in Table 5, whereas features that were found to 
decrease with stress are listed in Table 6. We evaluated 
the REFERENCE INTERVAL by (1) validating that the 
Stress and No-Stress Groups, separated by the sign of 
the IMPACT, were independent, belonging to two dif-
ferent distribution and (2) evaluating the robustness 
of the REFERENCE INTERVAL. To check if the val-
ues assigned to the Stress Group and No-Stress Group 
belonged to two different distributions with two inde-
pendent ranges, we performed a t-test for each feature 
in the training dataset. The p values obtained for the 
features are shown in Table 5. For all tests, the p value 
was less than 0.05, which confirmed that the measured 

values for each feature were significantly different 
between the stressful condition and the non-stressful 
condition.

Because the REFERENCE INTERVAL is obtained 
using the existing observations, it is dependent on the 
data used. Therefore, it is important to determine if the 
range would be different if it were based on another set 
of observations. We evaluated the robustness by per-
forming again a 4-fold cross validation. In each fold, 
the REFERENCE INTERVAL from each of the training 
and testing subsets are generated. We compare these 
intervals using the relative percentage different (RPD) 
method which evaluates the change in the REFERENCE 
INTERVAL. For each feature, we computed the RPD 
between the intervals generated using the respective 
subsets with Eq. 6:

By computing the RPD for each feature, we obtained of 
16.8% total difference from the cross-validation as seen 
in Table 7. between the intervals. Because that difference 
is relatively small, we concluded that the REFERENCE 
INTERVAL is robust to changes in the data used to cal-
culate it and is therefore reliable.

(6)RPDfeature =
|µRIA−µRIB |

2µRIB

Table 5  Intervals and p values for the values of each feature 
under stressful and non-stressful (reference) conditions—where 
values higher than the reference interval indicate stress

Feature Stress interval Reference interval p Value

µChestEDA 10.73 ± 7.5 3.7 ± 2.95 5E–118

MinChestEDA 11.12 ± 7.84 3.75 ± 3 1E–103

σChestEDA 0.15 ± 0.14 0.01 ± 0.01 8E–180

µChestSCL − 4.33 ±  4.11 − 14.88 ±  13.52 2E–128

µChestSCR 15.54 ± 15.3 12.72 ± 11.82 6E–57

σChestSCR 5.65 ± 5.47 0.84 ± 0.73 9E–139

MaxHR 105.74 ± 18.24 73.42 ± 13.06 4E–229

µHR 91.57 ± 15.91 63.79 ± 11.09 7E–229

MinHR 80.45 ± 14.26 56.6 ± 11.27 5E–215

σHR 9.04 ± 3.72 3.37 ± 1.85 8E–228

MaxEMG 1E–02 ± 8E–02 4E-02 ± 3E–02 3E–68

µEMG 1E–07 ± 7E–07 − 1E-07 ± 6E–07 4E–91

RMSEMG 1E–02 ± 5E–03 4E-03 ± 9E–04 1E–226

RMS50PEMG 1E–02 ± 5E–03 4E-03 ± 9E–04 3E–226

RMS90PEMG 1E–02 ± 5E–03 4E-03 ± 9E–04 3E–225

σEMG 1E–02 ± 5E–03 4E-03 ± 9E–07 2E–226

σRespRate 2.08 ± 1.19 0.56 ± 0.42 3E–225

MaxWristEDA 5.07 ± 4.05 0.55 ± 0.43 4E–223

µWristEDA 4.36 ± 3.69 0.33 ± 0.21 2E–232

MinWristEDA 4.23 ± 3.56 0.32 ± 0.21 2E–232

σWristEDA 0.17 ± 0.16 0.01 ± 0.01 4E–212

σWristTemp 0.06 ± 0.04 1E–02 ± 4E–03 6E–211

Table 6  Intervals and p values for the Values of each feature 
under stressful and non-stressful (reference) conditions—where 
values lower than the reference interval indicate stress

Feature Stress interval Reference interval p Value

MaxChestEDA 11.27 ± 7.99 3.79 ± 3.03 1.E–110

σChestSCL 1.65 ± 1.5 5.45 ± 4.82 8E–161

HFHRV 2E+11 ± 2E+11 2E+12 ± 1E+12 5E–227

LFHRV 3E+11 ± 3E+11 2E+12 ± 2E+12 4E–226

MadNN 21.43 ± 15.72 74.11 ± 42.68 1E–204

MCVNN 0.03 ± 0.02 0.09 ± 0.05 4E–196

|µ|NN 701.81 ± 82.84 954.91 ± 170.8 1E–219

MedNN 693.93 ± 80.36 959.64 ± 191.07 5E–214

PNN20 33.61 ± 28.55 75.35 ± 14.49 1E–220

PNN50 15.15 ± 15.15 38.6 ± 33.12 1E–167

RMSSDNN 28.54 ± 18.23 94.8 ± 46.63 2E–230

σNN 39.89 ± 25.97 107.69 ± 51.22 2E–218

MinEMG − 9E–02 ± 7E–02 − 2E–02 ± 1.E–02 7E–146

#PeaksEMG 6416.5 ± 866 6955 ± 721 1E–49

MaxRespRate 13.11 ± 3.36 18.34 ± 2.08 1E–229

µRespRate 11.68 ± 2.69 16.91 ± 2.4 4E–231

MinRespRate 9.82 ± 2.33 15.32 ± 2.96 7E–232

MaxWristTemp , 31.79 ± 2.12 34.99 ± 0.92 2E–175

µWristTemp 31.69 ± 2.1 34.93 ± 0.93 1E–178

MinWristTemp 31.66 ± 2.15 34.91 ± 0.92 5E–173
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Evaluation for two key aspects of the report: feature 
IMPACT and test FLAGs
Evaluation of the IMPACT​
The IMPACT of each feature was generated using Eqs. 1 
and 3, which are based on the SHAP method. The accu-
racy and success of the SHAP method were proven out-
side of this paper [8]. The IMPACT can be positive or 
negative, indicating that the corresponding feature con-
tributes to an increase or decrease in the overall stress 
probability, respectively. We evaluated the IMPACT 
parameter from two perspectives: its effectiveness as an 
indicator of stress and its ability to provide insights into 
the causes of stress in a given individual.

Effectiveness of the IMPACT value
To demonstrate the ability of the IMPACT parameter to 

explain how each feature affects stress, we examined the 
correlation between the IMPACT values for the features 
in our report and the results of previous studies. The 
previous studies found that the following features were 
affected by stress: µHR , σHR , RMSSDHRV  , PNN50HRV  
, µEDA , µEMG , RMSEMG , RMS90PEMG , and µRespRate . 
Those studies recorded for some of the features the range 
of values that indicated a normal or non-stressful state. 
For those features, the experimental reference inter-
vals provide insight on whether the test result is indica-
tive of a stressful or normal state. We tested whether the 
IMPACT parameter could provide the same information 
by creating a contingency table showing the relation-
ship between the test results that were assigned a posi-
tive or negative IMPACT value and the test results that 
fell within or outside the experimental reference interval. 
We then performed a Chi-squared test for each feature. 
We also used the 4-fold cross validation to create a con-
tingency table for each subset of data. A sample of the 
results of one of the folds is shown in Table 8.

The experiment showed what the normal and stress-
ful ranges were for the ECG and EDA features (Table 4); 
however, for the EMG features and respiration rate, they 
only specified if the feature values increased or decreased 
with stress, without providing normal ranges. Therefore, 
for those features, the REFERENCE INTERVAL used in 
the Chi-squared test was the one generated by our model, 
as shown in Table 5.

We performed the Chi-squared test on each feature 
of the testing data in each fold with the null hypoth-
esis that the two categories separated on the basis of 
IMPACT and the REFERENCE INTERVAL were not 
correlated. A sample of the computed p values and the 
contingency matrix are shown in Table  8. In each of 
the 4-folds, all of the tests resulted in a p value < 0.05, 
indicating that the null hypothesis was not supported 
by the data. Therefore, we rejected the null hypothe-
sis and confirmed a correlation between the results of 
using the REFERENCE INTERVAL and the IMPACT, 
respectively, as stress indicators. Thus, the IMPACT 
was found to be an effective parameter to indicate 
stress.

Insights provided by the IMPACT​
Figure  5 provides a summary of the mean IMPACT 

values assigned to each feature from all observations. 
The length of the bar represents the average impact of 
the feature on stress. The results show that the main 
physiological indicators of stress are related to the elec-
trical heart activity and the skin conductance measured 
from the chest or the wrist.

Table 7  Evaluating the robustness of the reference interval

4-Fold validation Total RPD ( % )

Fold 1 20.5

Fold 2 15.4

Fold 3 15.4

Fold 4 16.2

Average RPD 16.8

Table 8  Results of chi-squared tests for SHAP evaluation of stress 
prediction

Impact Impact p Value
> 0 < 0

pNN50HRV /∈ ’Ref. Int.’ 5 69 1.76E–07

pNN50HRV ∈ ’Ref. Int.’ 23 12

RMSSDHRV /∈ ’Ref. Int.’ 2 57 2.86E–16

RMSSDHRV ∈ ’Ref. Int.’

µRespRate /∈ ’Ref. Int.’ 72 2 2.86E–25

µRespRate ∈ ’Ref. Int.’ 0 46

µWristEDA /∈ ’Ref. Int.’ 25 0 2.18E–25

µWristEDA ∈ ’Ref. Int.’ 1 94

µWristTemp /∈ ’Ref. Int.’ 117 1 3.53E–11

µWristTemp ∈ ’Ref. Int.’ 0 2

µNN /∈ ’Ref. Int.’ 34 6 0.84E–21

µNN ∈ ’Ref. Int.’ 0 80

µHR /∈ ’Ref. Int.’ 17 25 1.06E–04

µHR ∈ ’Ref. Int.’ 7 71

σHR /∈ ’Ref. Int.’ 39 26 7.60E–06

σHR ∈ ’Ref. Int.’ 53 2

RMSEMG /∈ ’Ref. Int.’ 81 0 5.80E–26

RMSEMG ∈ ’Ref. Int.’ 53 2

RMS50PEMG /∈ ’Ref. Int.’ 80 0 4.75e–25

RMS50PEMG ∈ ’Ref. Int.’ 2 38

µEMG /∈ ’Ref. Int.’ 8 22 1.57E–03

µEMG ∈ ’Ref. Int.’ 4 86
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Evaluation of the FLAGs
The two FLAG columns in the stress report inform the 
patient and health care professionals if any measures 
should be taken regarding the corresponding feature 
as it relates to stress. We evaluated the consistency 
between the two FLAG indicators. Then, we evaluated 
the insights provided by the FLAGS into the causes of 
stress.

Consistency between the two FLAGs We extracted 
data for four factors from the sample report in Fig. 3 to 
illustrate the evaluation (Fig. 6). The star-shaped FLAGs 
are associated with the REFERENCE INTERVAL, 

whereas the circle-shaped FLAGs are associated with 
the IMPACT. If the star-shaped FLAG is green, then 
the measured value of the feature is within the REFER-
ENCE INTERVAL. Red star-shaped FLAGs indicate 
values that are outside the REFERENCE INTERVAL. 
If the circle-shaped FLAG is red, then the effect of the 
feature at the measured level is to increase stress. If the 
circle-shaped FLAG is green, then the effect of the fea-
ture at the measured level is to decrease stress. Because 
both FLAGS are supposed to indicate signs of stress, 
they should be consistent for each feature.

Fig. 5  Average impact of physiological features on stress
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The FLAGS consistency was again performed by 
dividing the data into 4 subsets. In each subset, the 
report was generated per observation of data and the 
percentage of flag consistency was evaluated. The per-
centage of consistency per subset of data is represented 
in Table 9. Overall, there was 80% consistency between 
the two FLAGS. The bar charts shown in Fig.  7 show 
the percentages of reports in the training data which 
shows the consistency (blue bars) and inconsistency 
(orange bars) between the FLAGS for each feature. 
The results showed that the FLAGS with the most 
inconsistency were mainly associated with the features 
extracted from the chest EDA and the EMG signal. Four 
features had inconsistency greater than 50% . Features 
with high inconsistency would not be considered good 
stress indicators compared with other features with low 
inconsistency.

Insights provided by the FLAGS The FLAGs in the 
stress prediction report might help explain the predicted 
stress probability. To illustrate that, we consider an exam-
ple report generated for one individual (Fig.  8). In that 
report, the model predicted that the user was stressed 
with a probability of 63% . The values registered for the 
ECG signal and chest EDA indicate a stressful state, 
which is represented by the positive IMPACT and the 
red FLAGS. The 37% model uncertainty is due to the fea-
tures that had green FLAG indicators, which include the 
minimum, maximum, and mean values of the EDA signal 
recorded from the wrist.

Discussion
In this section, we discuss the additional analysis that 
could be extracted on how stress could have a different 
effect on physiological measurements based on the per-
son’s age and gender. We also discuss one of the limita-
tions, the small dataset, and our proposed future work to 
overcome it.

Discussion on difference in reference intervals based 
on age and gender
The Reference Interval per physiological measurement, 
indicating the no-stress range, might be different between 
genders and more specifically it might be different per 
individual. In this section, we aim to study the difference 
in reference intervals generated by gender and then per 
individual for some features. For this analysis, we will 
consider the features that were assigned a positive impact 
higher than 5 % in the report of Fig. 3. These features are: 
σChestEDA , σWristEDA , MaxHR , µWristEDA,MaxWristEDA , 
|µ|NN ,and µHR . We aim to study if a significant difference 
is found between the reference intervals generated:

•	 Based on gender.
•	 Per individual.

By generating the reference interval using the data of 
each individual separately, we found that the reference 
intervals of σWristEDA,σChestEDA and MaxHR showed the 
higher difference between individuals, compared to 
the other studied features.

However, if we compare the reference intervals of 
the same features by separating the subjects into Males 
and Females, we found that the main difference in 
reference intervals was in the |µ|NN  , µHR and MaxHR . 
However since the data was collected from 3 Females 
and 11 Males and since we have few inputs per individ-
ual, we cannot confirm our analysis as a larger dataset 
is required to draw much reliable insights.

Discussion on the “best” experiment for a better dataset
The main limitation of this work is the relatively small 
dataset used which was caused by faulty measurements 
and small number of participants. In addition, we have 
no wide age range since the participants from which the 
WESAD data was collected from were graduate students. 
Therefore, in this section we explain what would be the 

Fig. 6  Test results extracted from a sample report
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optimal experiment to perform to collect the data needed 
to get more accurate and stable analysis to obtain the 
following:

(1) More robust reference intervals following the evalu-
ation done in “Evaluation of the ranges and the reference 
intervals” section. (2) More accurate analysis on the dif-
ference of reference intervals based on Age and Gender 
as discussed in “Discussion on difference inreference 
intervals based on age and gender” section.

Our future work therefore includes the implementa-
tion of a user-study that takes into consideration all the 
missing parameters that would have been useful in our 
analysis, a larger dataset. For the proposed user-study, 
the number of participants should be around 50 subjects, 
separated between 25 Males and 25 Females. We would 
separate them into 4 groups to compare between the 
normal and stress related physiological measurements 
based on gender and age : (1) Females between 18–25, 
(2) Females between 26–35, (3) Males between 18–25 
and (4) Males between 26–35. The collected measure-
ments will include the Respiration Signal, the ECG sig-
nal, the EMG signal collected from the Trapezius muscle 
and the EDA and Temperature measured from the wrist. 
Two different experiments can be performed. The first 
experiment would be in a controlled environment which 
includes a series of relaxed and stressful tasks to be per-
formed by the 50 subjects. For the stress conditions, the 
users will be exposed to the trier social stress test (TSST) 
as well as puzzles and logical tasks. The duration of the 
stress experiments will be 2 hours. As for the relaxed 
conditions, the subjects will be provided neutral read-
ing materials such as magazines for 20 min, they will be 
required to watch a set of funny video clips for 15 min, 
for amusement and finally they will perform controlled 
breathing exercises after each stress experiment in the 
aim of returning to a close to neutral/no stress state. 
The duration is 7 min and to be performed after each 
stress experiment. The labels will be collected using 
three self-reports: PANAS, STAI (State-Trait Anxiety 

Inventory) and Short Stress State Questionnaire (SSSQ). 
Another type of experiment can be performed to collect 
the needed data in the “wild”. The users will be asked to 
collect around 10 hours of measurements. More data is 
required in this experiment to make sure we have enough 
stress labels and since in the “wild” there are many factors 
that could lead to the collection of incorrect/faulty meas-
urements (such as disconnected device, low battery, ...), 
every 45 min the user will be asked to fill out the PANAS 
and the STAI questionnaires.

Conclusion
In this work, we provided a new design for explain-
able AI used in stress prediction based on physiologi-
cal measurements. To make AI-based stress evaluation 
more user-friendly and medically beneficial, the report 
is configurable on the basis of users’ needs. Based on the 
report, users can determine what biological features have 
the most impact on the prediction of stress in addition to 
any health-related abnormalities.

We developed AI models that can produce the neces-
sary explanations. The physiological measurements used 
in the stress report include signals related to heart activ-
ity, muscle activity, body temperature, and skin conduct-
ance. The report uses the same physiological features that 
are commonly used in experiments to study the biologi-
cal effects of stress.

The effectiveness of the report was evaluated using a 
quantitative and a qualitative assessment. The stress pre-
diction accuracy was shown to be comparable to state of 
the art at an F1-score of 0.78. The contributions of each 
physiological signal to the stress prediction was shown 
to correlate with ground truth. The evaluation of the ref-
erence interval showed that the chosen intervals were 
reliable. In addition to these quantitative evaluations, a 
qualitative survey with psychiatrists confirmed the clini-
cal usefulness of the explanation report as generated by 
the AI system. Future work should include the addition of 
more explanatory features related to specific emotional 
states of the patients, such as sadness, anxiety, and hap-
piness. In addition to the implementation of a user-study 
to collect a larger dataset. This dataset will allow separat-
ing the data of individuals based on gender and age group 
and obtain enough observations per user for a better 
analysis and more accurate results. Finally, focus group 
discussions and in-depth interviews of users and psy-
chiatrists would be performed as future work to explain 
the results provided by our stress explanation report and 
optimize our work accordingly.

Table 9  Flag evaluation through consistency check

4-Fold validation Consistency 
( % )

Fold 1 81

Fold 2 79

Fold 3 80

Fold 4 80

Average score 80
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Fig. 7  Consistency between the two FLAGS
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